Tag Archives: Motor Learning

Single-Session Anodal tDCS with Small-Size Stimulating Electrodes Over Frontoparietal Superficial Sites Does Not Affect Motor Sequence Learning.

Icon for Frontiers Media SA Icon for PubMed Central Related Articles

Single-Session Anodal tDCS with Small-Size Stimulating Electrodes Over Frontoparietal Superficial Sites Does Not Affect Motor Sequence Learning.

Front Hum Neurosci. 2017;11:153

Authors: Hashemirad F, Fitzgerald PB, Zoghi M, Jaberzadeh S

Abstract
Due to the potential of anodal transcranial direct current stimulation (a-tDCS) for enhancement of fine sequenced movements and increasing interest in achieving high level of fine movements in the trained and untrained hands especially at initial stage of learning, we designed this study to investigate whether the application of single-session a-tDCS with small-size stimulating electrodes over FPN sites, such as dorsolateral prefrontal cortex (DLPFC), primary motor cortex (M1) or posterior parietal cortex (PPC) could enhance sequence learning with the trained hand and these effects are transferred into the untrained hand or not. A total of 51 right-handed healthy participants were randomly assigned to one of the four stimulation groups: a-tDCS of left M1, DLPFC, PPC, or sham. Stimulation was applied for 20 min during a sequential visual isometric pinch task (SVIPT). Eight blocks of training using SVIPT were completed with the right hand during stimulation. Two blocks of sequence training with each hand were performed by participants as assessment blocks at three time points: baseline, 15 min and one day following the intervention. Behavioral outcomes including movement time, error rate and skill were assessed in all assessment blocks across three time points. We also measured corticospinal excitability, short-interval intracortical inhibition, and intracortical facilitation using single- and paired-pulse transcranial magnetic stimulation. The results indicated that the behavioral outcomes were significantly improved with the right trained hand, but this learning effect was not modulated by a-tDCS with small-size stimulating electrodes over the FPN. Transfer of learning into the untrained hand was observed in all four groups for movement time but not for the error rate or skill. Our results suggest that sequential learning in SVIPT and its transfer into the untrained hand were not sensitive to a single-session a-tDCS with small-size stimulating electrodes over left M1, DLPFC or PPC in young healthy participants.

PMID: 28420970 [PubMed]

The effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke.

Icon for Elsevier Science Icon for Elsevier Science Related Articles

The effect of transcranial direct current stimulation on motor sequence learning and upper limb function after stroke.

Clin Neurophysiol. 2017 07;128(7):1389-1398

Authors: Fleming MK, Rothwell JC, Sztriha L, Teo JT, Newham DJ

Abstract
OBJECTIVE: To assess the impact of electrode arrangement on the efficacy of tDCS in stroke survivors and determine whether changes in transcallosal inhibition (TCI) underlie improvements.
METHODS: 24 stroke survivors (3-124months post-stroke) with upper limb impairment participated. They received blinded tDCS during a motor sequence learning task, requiring the paretic arm to direct a cursor to illuminating targets on a monitor. Four tDCS conditions were studied (crossover); anodal to ipsilesional M1, cathodal to contralesional M1, bihemispheric, sham. The Jebsen Taylor hand function test (JTT) was assessed pre- and post-stimulation and TCI assessed as the ipsilateral silent period (iSP) duration using transcranial magnetic stimulation.
RESULTS: The time to react to target illumination reduced with learning of the movement sequence, irrespective of tDCS condition (p>0.1). JTT performance improved after unilateral tDCS (anodal or cathodal) compared with sham (p<0.05), but not after bihemispheric (p>0.1). There was no effect of tDCS on change in iSP duration (p>0.1).
CONCLUSIONS: Unilateral tDCS is effective for improving JTT performance, but not motor sequence learning.
SIGNIFICANCE: This has implications for the design of future clinical trials.

PMID: 28410884 [PubMed – indexed for MEDLINE]

Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: a randomized double-blind sham-controlled study.

Icon for Wiley Related Articles

Online and offline effects of cerebellar transcranial direct current stimulation on motor learning in healthy older adults: a randomized double-blind sham-controlled study.

Eur J Neurosci. 2017 05;45(9):1177-1185

Authors: Samaei A, Ehsani F, Zoghi M, Hafez Yosephi M, Jaberzadeh S

Abstract
The aim of this randomized double blinded sham-controlled study was to determine the effect of cerebellar anodal transcranial direct current stimulation (a-tDCS) on online and offline motor learning in healthy older individuals. Thirty participants were randomly assigned in experimental (n = 15) or sham tDCS (n = 15) groups. Participants in experimental group received 2 mA cerebellar a-tDCS for 20 min. However, the tDCS was turned off after 30 seconds in sham group. Response time (RT) and error rate (ER) in serial RT test were assessed before, during 35 minutes and 48 h after the intervention. Reduction of RT and ER following the intervention session was considered as short-term (35 min post intervention) and long-term offline learning (48 h post intervention), respectively. Online RT and ER reduction were similar in both groups (P > 0.05). RT was significantly reduced 48 hours post intervention in cerebellar a-tDCS group (P = 0.03). Moreover, RT was significantly increased after 35 minutes and 48 hours in sham tDCS group (P = 0.03, P = 0.007), which indicates a lack of short-term and long-term offline learning in older adults. A-tDCS on cerebellar region produced more short-term and long-term offline improvement in RT (P = 0.014, P = 0.01) compared to sham tDCS. In addition, online, short-term and long-term (48 h) offline error reduced in cerebellar a-tDCS as compared to sham-control group, although this reduction was not significant (P > 0.05). A deficit suggests that a direct comparison to a younger group was made. The findings suggested that cerebellar a-tDCS might be useful for improvement of offline motor learning in older individuals.

PMID: 28278354 [PubMed – indexed for MEDLINE]

Effects of tDCS on motor learning and memory formation: A consensus and critical position paper.

Icon for Elsevier Science Related Articles

Effects of tDCS on motor learning and memory formation: A consensus and critical position paper.

Clin Neurophysiol. 2017 Apr;128(4):589-603

Authors: Buch ER, Santarnecchi E, Antal A, Born J, Celnik PA, Classen J, Gerloff C, Hallett M, Hummel FC, Nitsche MA, Pascual-Leone A, Paulus WJ, Reis J, Robertson EM, Rothwell JC, Sandrini M, Schambra HM, Wassermann EM, Ziemann U, Cohen LG

Abstract
Motor skills are required for activities of daily living. Transcranial direct current stimulation (tDCS) applied in association with motor skill learning has been investigated as a tool for enhancing training effects in health and disease. Here, we review the published literature investigating whether tDCS can facilitate the acquisition, retention or adaptation of motor skills. Work in multiple laboratories is underway to develop a mechanistic understanding of tDCS effects on different forms of learning and to optimize stimulation protocols. Efforts are required to improve reproducibility and standardization. Overall, reproducibility remains to be fully tested, effect sizes with present techniques vary over a wide range, and the basis of observed inter-individual variability in tDCS effects is incompletely understood. It is recommended that future studies explicitly state in the Methods the exploratory (hypothesis-generating) or hypothesis-driven (confirmatory) nature of the experimental designs. General research practices could be improved with prospective pre-registration of hypothesis-based investigations, more emphasis on the detailed description of methods (including all pertinent details to enable future modeling of induced current and experimental replication), and use of post-publication open data repositories. A checklist is proposed for reporting tDCS investigations in a way that can improve efforts to assess reproducibility.

PMID: 28231477 [PubMed – indexed for MEDLINE]

Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View.

Icon for Frontiers Media SA Icon for PubMed Central Related Articles

Modulating Motor Learning through Transcranial Direct-Current Stimulation: An Integrative View.

Front Psychol. 2016;7:1981

Authors: Ammann C, Spampinato D, Márquez-Ruiz J

Abstract
Motor learning consists of the ability to improve motor actions through practice playing a major role in the acquisition of skills required for high-performance sports or motor function recovery after brain lesions. During the last decades, it has been reported that transcranial direct-current stimulation (tDCS), consisting in applying weak direct current through the scalp, is able of inducing polarity-specific changes in the excitability of cortical neurons. This low-cost, painless and well-tolerated portable technique has found a wide-spread use in the motor learning domain where it has been successfully applied to enhance motor learning in healthy individuals and for motor recovery after brain lesion as well as in pathological states associated to motor deficits. The main objective of this mini-review is to offer an integrative view about the potential use of tDCS for human motor learning modulation. Furthermore, we introduce the basic mechanisms underlying immediate and long-term effects associated to tDCS along with important considerations about its limitations and progression in recent years.

PMID: 28066300 [PubMed]

Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in Chronic Stroke.

Icon for Atypon Related Articles

Transcranial Direct Current Stimulation Enhances Motor Skill Learning but Not Generalization in Chronic Stroke.

Neurorehabil Neural Repair. 2018 Apr-May;32(4-5):295-308

Authors: Hamoudi M, Schambra HM, Fritsch B, Schoechlin-Marx A, Weiller C, Cohen LG, Reis J

Abstract
BACKGROUND: Motor training alone or combined with transcranial direct current stimulation (tDCS) positioned over the motor cortex (M1) improves motor function in chronic stroke. Currently, understanding of how tDCS influences the process of motor skill learning after stroke is lacking.
OBJECTIVE: To assess the effects of tDCS on the stages of motor skill learning and on generalization to untrained motor function.
METHODS: In this randomized, sham-controlled, blinded study of 56 mildly impaired chronic stroke patients, tDCS (anode over the ipsilesional M1 and cathode on the contralesional forehead) was applied during 5 days of training on an unfamiliar, challenging fine motor skill task (sequential visual isometric pinch force task). We assessed online and offline learning during the training period and retention over the following 4 months. We additionally assessed the generalization to untrained tasks.
RESULTS: With training alone (sham tDCS group), patients acquired a novel motor skill. This skill improved online, remained stable during the offline periods and was largely retained at follow-up. When tDCS was added to training (real tDCS group), motor skill significantly increased relative to sham, mostly in the online stage. Long-term retention was not affected by tDCS. Training effects generalized to untrained tasks, but those performance gains were not enhanced further by tDCS.
CONCLUSIONS: Training of an unfamiliar skill task represents a strategy to improve fine motor function in chronic stroke. tDCS augments motor skill learning, but its additive effect is restricted to the trained skill.

PMID: 29683030 [PubMed – indexed for MEDLINE]

Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning.

Icon for Elsevier Science Icon for Elsevier Science Related Articles

Cerebellar transcranial direct current stimulation interacts with BDNF Val66Met in motor learning.

Brain Stimul. 2018 Jul – Aug;11(4):759-771

Authors: van der Vliet R, Jonker ZD, Louwen SC, Heuvelman M, de Vreede L, Ribbers GM, De Zeeuw CI, Donchin O, Selles RW, van der Geest JN, Frens MA

Abstract
BACKGROUND: Cerebellar transcranial direct current stimulation has been reported to enhance motor associative learning and motor adaptation, holding promise for clinical application in patients with movement disorders. However, behavioral benefits from cerebellar tDCS have been inconsistent.
OBJECTIVE: Identifying determinants of treatment success is necessary. BDNF Val66Met is a candidate determinant, because the polymorphism is associated with motor skill learning and BDNF is thought to mediate tDCS effects.
METHODS: We undertook two cerebellar tDCS studies in subjects genotyped for BDNF Val66Met. Subjects performed an eyeblink conditioning task and received sham, anodal or cathodal tDCS (N = 117, between-subjects design) or a vestibulo-ocular reflex adaptation task and received sham and anodal tDCS (N = 51 subjects, within-subjects design). Performance was quantified as a learning parameter from 0 to 100%. We investigated (1) the distribution of the learning parameter with mixture modeling presented as the mean (M), standard deviation (S) and proportion (P) of the groups, and (2) the role of BDNF Val66Met and cerebellar tDCS using linear regression presented as the regression coefficients (B) and odds ratios (OR) with equally-tailed intervals (ETIs).  Continue Reading →

Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals.

Icon for Wiley Related Articles

Effects of anodal transcranial direct current stimulation over lower limb primary motor cortex on motor learning in healthy individuals.

Eur J Neurosci. 2018 Apr;47(7):779-789

Authors: Foerster Á, Dutta A, Kuo MF, Paulus W, Nitsche MA

Abstract
Transcranial direct current stimulation (tDCS) is a neuromodulatory technique which alters motor functions in healthy humans and in neurological patients. Most studies so far investigated the effects of tDCS on mechanisms underlying improvements in upper limb performance. To investigate the effect of anodal tDCS over the lower limb motor cortex (M1) on lower limb motor learning in healthy volunteers, we conducted a randomized, single-blind and sham-controlled study. Thirty-three (25.81 ± 3.85, 14 female) volunteers were included, and received anodal or sham tDCS over the left M1 (M1-tDCS); 0.0625 mA/cm2 anodal tDCS was applied for 15 min during performance of a visuo-motor task (VMT) with the right leg. Motor learning was monitored for performance speed and accuracy based on electromyographic recordings. We also investigated the influence of electrode size and baseline responsivity to transcranial magnetic stimulation (TMS) on the stimulation effects. Relative to baseline measures, only M1-tDCS applied with small electrodes and in volunteers with high baseline sensitivity to TMS significantly improved VMT performance. The computational analysis showed that the small anode was more specific to the targeted leg motor cortex volume when compared to the large anode. We conclude that anodal M1-tDCS modulates VMT performance in healthy subjects. As these effects critically depend on sensitivity to TMS and electrode size, future studies should investigate the effects of intensified tDCS and/or model-based different electrode positions in low-sensitivity TMS individuals.

PMID: 29443433 [PubMed – in process]

Modulation of Speech Motor Learning with Transcranial Direct Current Stimulation of the Inferior Parietal Lobe.

Icon for Frontiers Media SA Icon for PubMed Central Related Articles

Modulation of Speech Motor Learning with Transcranial Direct Current Stimulation of the Inferior Parietal Lobe.

Front Integr Neurosci. 2017;11:35

Authors: Deroche MLD, Nguyen DL, Gracco VL

Abstract
The inferior parietal lobe (IPL) is a region of the cortex believed to participate in speech motor learning. In this study, we investigated whether transcranial direct current stimulation (tDCS) of the IPL could influence the extent to which healthy adults (1) adapted to a sensory alteration of their own auditory feedback, and (2) changed their perceptual representation. Seventy subjects completed three tasks: a baseline perceptual task that located the phonetic boundary between the vowels /e/ and /a/; a sensorimotor adaptation task in which subjects produced the word “head” under conditions of altered or unaltered feedback; and a post-adaptation perceptual task identical to the first. Subjects were allocated to four groups which differed in current polarity and feedback manipulation. Subjects who received anodal tDCS to their IPL (i.e., presumably increasing cortical excitability) lowered their first formant frequency (F1) by 10% in opposition to the upward shift in F1 in their auditory feedback. Subjects who received the same stimulation with unaltered feedback did not change their production. Subjects who received cathodal tDCS to their IPL (i.e., presumably decreasing cortical excitability) showed a 5% adaptation to the F1 alteration similar to subjects who received sham tDCS. A subset of subjects returned a few days later to reiterate the same protocol but without tDCS, enabling assessment of any facilitatory effects of the previous tDCS. All subjects exhibited a 5% adaptation effect. In addition, across all subjects and for the two recording sessions, the phonetic boundary was shifted toward the vowel /e/ being repeated, consistently with the selective adaptation effect, but a correlation between perception and production suggested that anodal tDCS had enhanced this perceptual shift. In conclusion, we successfully demonstrated that anodal tDCS could (1) enhance the motor adaptation to a sensory alteration, and (2) potentially affect the perceptual representation of those sounds, but we failed to demonstrate the reverse effect with the cathodal configuration. Overall, tDCS of the left IPL can be used to enhance speech performance but only under conditions in which new or adaptive learning is required.

PMID: 29326563 [PubMed]